skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Liya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, two pairs of 0D chiral copper iodide clusters were synthesized. The structural rigidity is increased by halogen modulation to obtain a near unity PLQY. The applications in white LED and X-ray imaging are extremely promising. 
    more » « less
    Free, publicly-accessible full text available May 13, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available March 20, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Mn2+/Cr3+codoped Cs2AgInCl6double perovskite were synthesizedviaa facile hydrothermal method, which exhibits two photoluminescence bands with a wide emission switch ranging from orange to NIR and the photoluminescence quantum yield of 49.3%. 
    more » « less
  6. Using ligand exchange on FAPbI3 perovskite nanocrystals (PNCs) surface with chiral tridentate L-cysteine (Lcys) ligand, we successfully prepared chiral FAPbI3 PNCs that show circularly polarized luminescence (CPL) (dissymmetry factor; glum = 2.1 × 10−3) in the near-infrared (NIR) region from 700 to 850 nm and a photoluminescence quantum yield (PLQY) of 81%. The chiral characteristics of FAPbI3 PNCs are ascribed to induction by chiral L/D-cys, and the high PLQY is attributed to the passivation of the PNCs defects with L-cys. Also, effective passivation of defects on the surface of FAPbI3 PNCs by L-cys results in excellent stability toward atmospheric water and oxygen. The conductivity of the L-cys treated FAPbI3 NC films is improved, which is attributed to the partial substitution of L-cys for the insulating long oleyl ligand. The CPL of the L-cys ligand treated FAPbI3 PNCs film retains a glum of −2.7 × 10−4. This study demonstrates a facile yet effective approach to generating chiral PNCs with CPL for NIR photonics applications. 
    more » « less
  7. Broadband near infrared (NIR) emission materials are of interest for various applications including non-destructive biomedical imaging. In this work, ytterbium ions (Yb 3+ ) were successfully doped into Cs 2 AgInCl 6 :Cr 3+ (CAIC:Cr 3+ ) double perovskite single crystals (DPSCs) by a facile hydrothermal method. Under 365 nm excitation, the co-doped CAIC:Cr 3+ ,Yb 3+ DPSCs showed broad NIR emission ranging from 800 to 1400 nm, which spanned the NIR-I (700–900 nm) and NIR-II (1000–1700 nm) bio-windows, with an emission band at 1000 nm and a full-width at half maximum (FWHM) of 188 nm. It is found that Yb 3+ ion doping could effectively improve the photoluminescence (PL) performance of CAIC:Cr 3+ DPSCs. Compared to the photoluminescence quantum yield (PLQY) of 22.5% for the single doped CAIC:Cr 3+ , the co-doped CAIC:Cr 3+ ,Yb 3+ DPSCs show a higher PLQY of ∼45%, which is attributed to the synergistic effect of reduced non-radiative recombination due to defect passivation and increase in crystallinity, and energy transfer (ET) of self-trapped excitons (STEs) to Cr 3+ . As a demonstration of applications, NIR pc-LEDs were fabricated by combining the as-synthesized NIR-emitting phosphor CAIC:Cr 3+ ,Yb 3+ with InGaN UV chips ( λ em = 365 nm) and used to image veins in a palm and for night vision using a NIR camera. The results suggest that the synthesized CAIC:Cr 3+ ,Yb 3+ DPSCs have great potential in biological applications. 
    more » « less